Cara Mencari Keliling Lingkaran Dengan Diameter
Artikel ini disusun bersama
. Grace Imson adalah guru matematika dengan 40 tahun pengalaman mengajar. Grace saat ini adalah pengajar matematika di City College of San Francisco dan sebelumnya bekerja di Math Department di Saint Louis University. Dia mengajar matematika di sekolah dasar, sekolah menengah, dan perguruan tinggi. Grace memiliki gelar MA dalam Pendidikan, dengan spesialisasi Administrasi dan Pengawasan, dari Saint Louis University. Artikel ini telah dilihat 596.204 kali.
Halaman ini telah diakses sebanyak 596.204 kali.
Lingkaran adalah garis melengkung yang kedua ujungnya bertemu pada jarak yang sama dari titik pusat. Kedudukan titik-titik pada bidang datar berjarak sama dengan sebuah titik tertentu pada bidang tersebut. Titik tertentu itu disebut sebagai titik pusat lingkaran.
Lingkaran adalah bentuk yang sangat simetris. Setiap garis yang melalui pusat membentuk garis simetri refleksi dan memiliki simetri putar di sekitar pusat untuk setiap sudut.
Menurut publikasi University of Cambridge dalam nrich.maths.org, lingkaran mengandung makna simbolis. Bentuk ini sering digunakan untuk melambangkan harmoni dan persatuan.
Misalnya, pada simbol Olimpiade, terdapat memiliki lima lingkaran berkaitan dengan warna berbeda. Ini mewakili lima benua utama dunia yang bersatu dalam semangat persaingan yang sehat.
Materi geometri dalam matematika membahas lebih lanjut tentang keliling lingkaran sebagai berikut.
Contoh Soal Keliling Lingkaran Jika yang Diketahui Jari-jari
1. Diketahui sebuah lingkaran memiliki jari-jari 21 cm. Tentukan berapa keliling dari lingkaran tersebut!Pembahasan:Diketahui:r = 21 cmπ = 22/7
K = 2 x π x rK = 2 x 22/7 x 21 cmK = 44/7 X 21 cmK = 132 cm
Jadi, keliling dari lingkaran yang memiliki jari-jari 21 cm adalah 132 cm.
2. Hitunglah keliling dari lingkaran yang memiliki jari-jari 15 cm!Pembahasan:Diketahui:r = 15 cmπ = 3,14
K = 2 x π x rK = 2 x 3,14 x 15 cmK = 2 x 47,1 cmK = 94,2 cm
Jadi, keliling dari lingkaran dengan jari-jari 15 cm adalah 94,2 cm.
Contoh Soal Keliling Lingkaran 1
Keliling lingkaran dengan jari-jari 14 cm adalah...
a. 22 cmb. 44 cmc. 88 cmd. 110 cm
Jari-jari = r = 14 cmKeliling lingkaran = 2πrK = 2 x (22/7) x 14 cmK = 88 cm
Maka jawaban yang benar adalah C.
Contoh Soal Keliling Lingkaran
Sudut Pusat dan Keliling Lingkaran
Sudut pusat adalah sudut yang dibentuk oleh dua buah jari-jari lingkaran. Ukuran sudut pusat sama dengan dua kali sudut keliling. Sedangkan sudut keliling adalah sudut yang terbentuk dari dua buah tali busur yang berpotongan pada keliling sebuah lingkaran.
Sudut keliling lingkaran dibedakan menjadi:
Itulah macam rumus keliling lingkaran yang dapat digunakan dalam materi matematika.
Artikel ini disusun bersama
. David Jia adalah seorang Tutor Akademis dan Pendiri LA Math Tutoring, sebuah perusahaan les privat yang berbasis di Los Angeles, California. Dengan lebih dari 10 tahun pengalaman mengajar, David menangani siswa dari segala usia dan kelas dalam berbagai mata pelajaran, serta memberikan konseling penerimaan perguruan tinggi dan persiapan ujian untuk SAT, ACT, ISEE, dan banyak lagi. Setelah mencapai nilai matematika 800 yang sempurna dan nilai bahasa Inggris 690 di SAT, David dianugerahi Beasiswa Dickinson dari Universitas Miami, dan lulus dengan gelar Sarjana Administrasi Bisnis. Selain itu, David bekerja sebagai instruktur video daring untuk perusahaan buku teks seperti Larson Texts, Big Ideas Learning, dan Big Ideas Math. Artikel ini telah dilihat 49.589 kali.
Halaman ini telah diakses sebanyak 49.589 kali.
Rumus keliling lingkaran digunakan untuk menghitung panjang antara titik A di garis keliling lingkaran ke titik itu kembali. Begini cara menghitungnya dengan rumus keliling lingkaran.
Dikutip dari Pasti Bisa Matematika untuk SD/Mi Kelas VI oleh Tim Tunas Karya Guru, kamu perlu mengenal unsur lingkaran untuk menghitung keliling lingkaran. Unsur lingkaran yang digunakan dalam rumus keliling lingkaran yaitu jari-jari atau radius (r) dan diameter atau garis tengah (d).
Unsur lingkaran di antaranya:
SCROLL TO CONTINUE WITH CONTENT
- Titik pusat (titik O), yaitu titik yang terletak di tengah-tengah lingkaran- Jari-jari atau radius (r), yaitu garis dari titik pusat lingkaran ke lengkungan lingkaran- Diameter (garis tengah), yaitu garis lurus yang menghubungkan dua titik pada lengkungan lingkaran dan melalui titik pusat- Busur, yaitu garis lengkung yang terletak pada lengkungan lingkaran dan menghubungkan dua titik sebarang pada lengkungan tersebut- Tali busur, yaitu garis lurus dalam lingkaran yang menghubungkan dua titik pada lengkungan lingkaran- Juring, yaitu luas daerah dalam lingkaran yang dibatasi dua buah jari-jari lingkaran dan sebuah busur yang diapit kedua jari-jari lingkaran tersebut
Contoh Soal Menentukan Titik Pusat Lingkaran
Sejauh ini, gue harap elo udah paham sama materi titik pusat lingkaran, ya. Supaya pemahaman elo semakin mendalam, gimana kalau kita adain kuis?
Yap! Gue punya tiga contoh soal buat menentukan titik pusat lingkaran, nih. Coba elo asah kemampuan elo tentang materi hari ini dengan mengerjakan ketiga soal di bawah ini, ya. Semangat!
Tentukan persamaan umum lingkaran yang melalui titik pusat lingkaran P (-3, 7) dan melalui titik Q (-9, -1).
A. (x+3)² + (y-7)² = 100
B. (x-3)² + (y-7)² = 100
C. (x+3)² + (y+7)² = 100
D. (x-3)² – (y-7)² = 100
Ingat bahwa persamaan umum lingkaran berbentuk
Dengan merupakan titik pusat lingkaran dan (y,p) merupakan titik yang dilalui. Maka dari itu, untuk lingkaran yang melalui titik pusat lingkaran P (-3, 7) dan melalui titik Q (-9, -1), dapat kita tentukan jari-jarinya terlebih dahulu, yaitu:
(-9 – (-3))² + (-1 – 7)² = r²
36 + 64 = 100, dengan demikian r² = 100
Sehingga, persamaan umum lingkarannya adalah (x + 3)² + (y-7)² = 100
Jadi, jawaban yang paling tepat yaitu A.
Diketahui persamaan standar lingkaran yaitu x² + y² – 12x + 5y = 20. Tentukan jari-jari dari lingkaran tersebut!
x² + y² – 12x + 5y = 20 merupakan persamaan standar lingkaran.
Dari (1) diperoleh dan , sehingga:
Dari persamaan (1) diketahui bahwa , maka:
Jadi, jawaban yang paling tepat yaitu A.
Diketahui persamaan standar lingkaran yaitu . Tentukan titik pusat lingkaran tersebut!
Untuk persamaan lingkaran yang berbentuk , maka titik pusatnya yaitu A = -12, B=-10. Sehingga:
Jadi, jawaban yang paling tepat yaitu B.
Gimana, materi pembelajaran kita hari ini? Nggak susah, kan? Mungkin, gue bisa highlight satu hal buat elo. Kalau elo mau mencari titik pusat lingkaran, ingat aja buat nyari titik koordinatnya dulu, ya.
Kalau koordinatnya udah ketemu, elo bisa nerusin hasil akhirnya dengan lebih mudah. Nah, dari ketiga contoh soal di atas … siapa yang jawabannya benar semua, nih?
Oh iya, kalau elo merasa tiga soal di atas masih kurang buat ngebantu elo belajar tentang titik pusat, tenang aja! Zenius punya puluhan latihan soal buat elo persiapan try out, lho.
Lumayan banget nih, bisa sambil mengasah kemampuan elo mengerjakan soal-soal nantinya. Yuk, langsung aja klik link di bawah ini buat ikutan latihan soalnya, ya!
Latihan Try Out Bareng Zenius
Nah, itu dia pembahasan kita hari ini tentang titik pusat lingkaran. Lengkap banget, kan? Mulai dari pengertian, rumus, garis singgung, sampai penjabaran dari contoh soal titik pusat lingkaran.
Kalau dari elo sendiri, gimana? Udah paham sejauh ini? Oh iya, Zenius juga punya materi matematika lainnya yang nggak kalah keren dan menarik, lho. Nah, video materi matematika di bawah ini langsung diajarin sama Sabda! Penasaran? Tonton videonya langsung, ya!
Bangun datar merupakan salah satu materi yang sering muncul pada mata pelajaran Matematika. Bangun datar terdiri dari persegi, persegi panjang, segitiga, lingkaran, dan lain sebagainya. Setiap bangun datar yang ada, memiliki rumus luas dan keliling yang berbeda-beda. Lantas, apa ya rumus keliling lingkaran?
Sebelum membahas lebih jauh mengenai rumus keliling lingkaran, ada baiknya mengetahui apa itu lingkaran, lalu bagaimana unsur dan sifat-sifatnya. Berikut ini penjelasannya yang berhasil detikEdu rangkum.
Lingkaran bisa dipahami sebagai suatu garis lengkung, yang kedua ujung dan titiknya, terletak pada garis lengkung tersebut dengan jarak yang sama terhadap suatu titik tertentu. Lingkaran bisa diartikan sebagai sekumpulan titik-titik yang tidak terhingga, mempunyai jarak yang sama pada titik tertentu.
SCROLL TO CONTINUE WITH CONTENT
Dikutip melalui buku berjudul Geometri dan Pengukuran Berbasis Pendekatan Saintifik karya Toybah, dkk (2020), Lingkaran adalah himpunan dari titik-titik yang memiliki jarak sama terhadap suatu titik tertentu. Jarak tersebut disebut dengan jari-jari lingkaran.
Sedangkan, titik pusat tertentu bisa disebut sebagai titik pusat lingkaran. Berikut ini unsur-unsur dan sifat-sifat pada lingkaran.
Contoh soal keliling lingkaran dengan phi 22/7
Contoh soal keliling lingkaran dengan phi 22/7
Ada sebuah koin raksasa memiliki panjang jari-jari mencapai 70 cm. Kira-kira, berapa panjang keliling koin tersebut?
Karena yang diketahui jari-jari kelipatan tujuh, penghitungan keliling dilakukan menggunakan rumus Keliling Lingkaran = π x 2r dan phi 22/7, maka:
Maka, keliling koin raksasa tersebut adalah 440 cm.
Gimana, rumus keliling lingkaran dan cara menghitung keliling lingkaran cukup mudah, bukan? Yuk, perbanyak latihan dari contoh soal keliling lingkaran diatas agar makin mudah memahami materinya, ya!
Baca Juga: Sin Cos Tan dalam Trigonometri: Rumus, Tabel, dan Contoh Soal
TEMPO.CO, Jakarta - Lingkaran adalah salah satu bentuk bangun datar yang berjarak sama terhadap satu titik tertentu. Titik tertentu yang dimaksud berada tepat di tengah lingkaran yang disebut sebagai titik pusat lingkaran.
Penentuan luas dan keliling lingkaran umumnya muncul dalam mata pelajaran Matematika sejak duduk di bangku kelas empat sekolah dasar (SD). Lantas, bagaimana rumus keliling lingkaran?
Unsur-unsur Lingkaran
Yang termasuk dalam unsur-unsur lingkaran antara lain:
Titik pusat merupakan titik tengah pada diameter lingkaran.
Diameter merupakan ruas garis yang bisa menghubungkan dua titik berbeda pada lingkaran melalui pusat lingkaran.
Jari-jari merupakan jarak antara titik pusat dengan sisi lingkaran.
Busur lingkaran merupakan suatu garis lengkung dari keliling lingkaran.
Tali busur merupakan garis yang menghubungkan dua titik lingkaran, namun tidak melalui pusat lingkaran.
Juring merupakan permukaan lingkaran yang dibatasi dengan jari-jari.
Tembereng merupakan permukaan lingkaran yang dibatasi dengan busur dan tali busur.
Apotema adalah jarak di antara dua titik pusat lingkaran dan tali busur.
Contoh Soal Keliling Lingkaran 2
Jika garis tengah sebuah lingkaran sepanjang 20 cm, berapa keliling lingkaran tersebut?
Garis tengah = diameter = d = 20 cmKeliling lingkaran = πdK = 3,14 x 20 cmK = 62,8 x cm
Maka, jawaban yang benar adalah 62,8 cm
Nah, itu dia cara menghitung keliling lingkaran beserta contoh soalnya. Yuk, coba latihan menggunakan rumus keliling lingkaran !
Apa, sih, lingkaran? Iya, yang bulat itu. Dilansir e-Gmat, lingkaran adalah bangun geometris yang terbentuk dari kumpulan titik pada jarak tetap. Lingkaran termasuk dalam bangun datar yang unik, sebab hanya punya satu lengkung dan gak ada titik sudut, layaknya bentuk lain.
Saat mempelajari bentuk geometri ini, kamu akan bertemu dengan rumus keliling lingkaran hingga luas bangun datar. Sebelumnya, akan lebih mudah kalau kamu memahami istilah-istilah yang menyusun bangun lingkaran nantinya dari cara menghitung keliling lingkaran hinga contoh soal keliling lingkaran akan dibahas dibawah ini. Apa saja?
Lingkaran adalah bangun datar yang tersusun dari titik-titik yang berjarak sama dari satu titik pusat. Jarak umum dari pusat lingkaran ke titik-titiknya disebut jari- jari. Jadi, secara keseluruhan, susunan lingkaran bergantung pada pusatnya (O) dan jari-jarinya (R).
Kalau mengamati sekitar, ada banyak benda yang berbentuk lingkaran. Yup, ada jam dinding, piring, alas gelas, hula hoop, dan masih banyak lainnya. Semuanya memiliki bentuk yang sama dan gak punya titik sudut.
Nah, ternyata, lingkaran gak sesederhana garis panjang yang melingkar, lho. Ada banyak istilah dalam bangun dua dimensi ini yang perlu kamu ketahui sebelum menghitung kelilingnya.
Agar lebih mudah memahaminya, kamu bisa melihat gambar di atas, ya.
Rumus Titik Pusat Lingkaran
Kalau nyari jari-jari lingkaran, mungkin elo udah tau rumus r = d : 2. Tapi, gimana sih, cara mencari titik pusat lingkaran?
Salah satu cara mencari titik pusat lingkaran yaitu menggunakan rumus. Kalau di kehidupan sehari-hari, elo bisa banget menggunakan rumus di bawah ini buat nyari titik pusat lingkaran di ring basket.
Tunggu, deh. Buat apa gue nyari titik pusat lingkaran yang ada di ring basket? Eits, ini dia menariknya!
Kalau elo main basket dan tahu angka tepat dari titik pusat lingkarannya, elo bisa lebih hati-hati saat melempar bola ke dalam ring supaya bisa masuk dengan tepat.
Nah, ini rumus yang bisa elo pakai buat mencari titik pusat lingkaran.
Selain rumus di atas, sebenarnya cara mencari titik pusat lingkaran ini beragam banget, lho. Biasanya, bakal diketahui persamaan lingkaran dulu, nih. Terus, elo bisa cari titik pusat lingkaran melalui koordinat.
Misalnya, diketahui persamaan lingkaran (x-1)² + (y-2)². Nah, elo jadi langsung tahu koordinat x di angka 1. Sedangkan koordinat y di angka 2. Itu dia rumus gampangnya kalau elo mau mencari titik pusat lingkaran.
Buat cari tahu titik koordinat kayak di atas, elo juga bisa menggunakan rumus persamaan kuadrat, nih. Kayak gimana rumusnya? Elo bisa cari tahu di artikel Rumus Persamaan Kuadrat dan Akar-Akarnya, ya.
Baca Juga: Rumus Persamaan Lingkaran dan Contoh Soal – Materi Matematika Kelas 11